๐Ÿค– Computer Science

1. Basic์ธ๊ณต์ง€๋Šฅ > ๊ธฐ๊ณ„ํ•™์Šต > ๋”ฅ๋Ÿฌ๋‹ > ํŠธ๋žœ์Šคํฌ๋จธMachine LearningSupervised Learning (Data-label)classification: ํŠน์ • ํด๋ž˜์Šค ์˜ˆ์ธกregression: ์ˆ˜์น˜ ์˜ˆ์ธกUnsupervised Learning (unlabled data)clustering - ํŠน์ง• ๊ณ ๋ คํ•ด์„œ ๋ฌถ์ŒReinforcement Learning: ๋‘ ๊ฐ€์ง€ ์„ ํƒExploration: ์ƒˆ๋กœ์šด ํ–‰๋™Exploitation: ๊ธฐ์กด ํ–‰๋™ ์ค‘ ๊ฐ€์žฅ ๋งŒ์กฑ๋„ ๋†’์€ ๊ฒƒ ์„ ํƒ   2. Machine Learning(๊ฐœ๋…)๊ณผ Data(์ข…๋ฅ˜, ๋ชจ์–‘)Datasettraining datavalidation datatest dataTargetPredictionmodel parametermodel hyperpar..
von Nuemann architectureassert ํ•จ์ˆ˜: ์—๋Ÿฌ ๊ฒ€์ถœ. ํŠน์ • ์กฐ๊ฑด ๊ฑฐ์ง“์ด๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ค‘๋‹จbus: Device controller์™€ memory๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๊ฒฝ๋กœlocal buffer: ๊ฐ Device controller๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ฒ„ํผIDT: ์ธํ„ฐ๋ŸฝํŠธ๋ฅผ ๋ฐ›์œผ๋ฉด ์ด ํ…Œ์ด๋ธ”์„ ์ฐธ์กฐํ•จDevice driver: Device controller์™€ OS ๊ฐ„์˜ ํ†ต์‹ ์„ ๋‹ด๋‹นํ•จkilo / mega / giga / tera: ์šฉ๋Ÿ‰ ๋‹จ์œ„address space ๊ตฌ์„ฑ: code, data, stack, heapprocess 5๊ฐ€์ง€ ์ƒํƒœ: new, ready, running, blocked, exitfork ๋ฆฌํ„ด ๋ฐธ๋ฅ˜:๋ถ€๋ชจ: ์ž์‹ PID์ž์‹: 0์‹คํŒจ: -1zombie process: wait ํ˜ธ์ถœํ•˜์ง€ ์•Š๊ณ ..
์ปดํ“จํ„ฐ ๊ณผํ•™์—์„œ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ณต์žก๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐ $$T(n), O, \Theta, \Omega$$ ๋“ฑ์˜ ํ‘œ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ‘œ๊ธฐ๋ฒ•์€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹คํ–‰ ์‹œ๊ฐ„์ด๋‚˜ ๊ณต๊ฐ„ ์š”๊ตฌ์‚ฌํ•ญ์˜ ์ƒํ•œ, ํ•˜ํ•œ, ๋˜๋Š” ์ •ํ™•ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ง€์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ‘œ๊ธฐ๋ฒ•์„ ๋น… ์˜ค ํ‘œ๊ธฐ๋ฒ•์ด๋ผ๊ณ ๋„ ํ•˜๋ฉฐ, ๊ฐ๊ฐ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์˜๋ฏธ๋ฅผ ๊ฐ€์ง„๋‹ค. Big O ํ‘œ๊ธฐ๋ฒ• (O): ํ•จ์ˆ˜์˜ ์ƒํ•œ์„ ์„ค๋ช…ํ•œ๋‹ค. ( O(g(n)) )์€ ํ•จ์ˆ˜ ( f(n) )์ด ( c \times g(n) )์„ ์ดˆ๊ณผํ•˜์ง€ ์•Š์Œ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Š” ์ฃผ๋กœ ์ตœ์•…์˜ ๊ฒฝ์šฐ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค. Theta ํ‘œ๊ธฐ๋ฒ• ((\Theta)): ํ•จ์ˆ˜์˜ ์ •ํ™•ํ•œ ์„ฑ์žฅ๋ฅ ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ( \Theta(g(n)) )์€ ( f(n) )์ด ( c_1 \times g(n) )๊ณผ ( c_2 \times g(..
๊ฒน์น˜๋Š” ํ•˜์œ„ ๋ฌธ์ œ(Subproblem)๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•ด ๋‚˜๊ฐ€๋Š” ๋ฐฉ์‹์œผ๋กœ ์ตœ์ ํ™” ๋ฌธ์ œ๋“ค ํŠน์ง•1. ์ž‘์€ ํ•˜์œ„๋ฌธ์ œ๋“ค์ด ๋ฐ˜๋ณต์ ์œผ๋กœ ๋ฐœ์ƒํ•˜๋ฉฐ, ์ด๋“ค์˜ ํ•ด๊ฒฐ ๊ฒฐ๊ณผ๊ฐ€ ์žฌํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๋•Œ 2. Optimal Substructure(์ตœ์ ๋ถ€๋ถ„๊ตฌ์กฐ)์„ ๊ฐ–์ถ˜ ๋ฌธ์ œ. ํฐ ๋ฌธ์ œ์˜ ์ตœ์ ํ•ด๊ฐ€ ์ž‘์€ ๋ฌธ์ œ์˜ ์ตœ์ ํ•ด๋ฅผ ํ†ตํ•ด ๊ตฌํ•  ์ˆ˜ ์žˆ์„ ๋•Œ 3. ์ค‘๋ณต๋œ ๊ณ„์‚ฐ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ. ๊ฐ™์€ ํ•˜์œ„ ๋ฌธ์ œ๋ฅผ ๋ฐ˜๋ณตํ•ด์„œ ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋•Œ ํ•˜์œ„๋ฌธ์ œ๊ฐ€ ๋…๋ฆฝ์ , ์ค„์—ฌ๊ฐ€๋ฉด์„œ ํ•ด๊ฒฐ -> Divide & Conquer ํ•˜์œ„๋ฌธ์ œ๊ฐ€ ์ค‘์ฒฉ๋จ, ๋ฐ˜๋ณตํ•ด์•ผ ํ•จ -> Dynamic Programming DP๋กœ ํ•ด๊ฒฐํ•˜๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ฌธ์ œ๋“คlongest common subsequenceKnapsack problemRod cutting problemshortest ..
ascending order๋กœ ์ •๋ ฌํ•˜๋Š” qseudocode๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. (index๊ฐ€ 1๋ถ€ํ„ฐ n๊นŒ์ง€๋ผ๊ณ  ๊ฐ€์ •ํ–ˆ์„ ๋•Œ) INSERTION-SORT(A, n) -> A[1 .. n] for j
230307 ์ธ์ž… Computer Science/Engineering > Artificial Inteligence > Machine Learning > Deep Learning > Transformer Machine Learning Supervised Learning : labeled datasets ์‚ฌ์šฉ Classification : ๋ถ„๋ฅ˜, ํŠน์ • ํด๋ž˜์Šค๋ฅผ ์˜ˆ์ธก Regression : ์Šค์นผ๋ผ ๊ฐ’(์ˆ˜์น˜)์„ ์˜ˆ์ธก. Unsupervised Learning : unlabeled data ์‚ฌ์šฉ Clustering : ๋น„์Šทํ•œ ํŠน์„ฑ์„ ๊ฐ€์ง„ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ” Reinforcement Learning : reward๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ํ•™์Šต ์ง„ํ–‰ Exploration : Agent๊ฐ€ ์ƒˆ๋กœ์šด ํ–‰๋™ ์ˆ˜ํ–‰, ๋” ๋งŽ์€ ์ •๋ณด ์–ป์Œ..
DFS/BFS ๋ฅผ ์œ„ํ•œ ์ž๋ฃŒ๊ตฌ์กฐ ๊ธฐ์ดˆ : ์Šคํƒ, ํ, ์žฌ๊ท€ํ•จ์ˆ˜ํƒ์ƒ‰ : ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ ์ค‘์—์„œ ์›ํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ฐพ๋Š” ๊ณผ์ •๋Œ€ํ‘œ์ ์ธ ํƒ์ƒ‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜ DFS, BFS - ๊ธฐ๋ณธ ์ž๋ฃŒ๊ตฌ์กฐ์ธ ์Šคํƒ๊ณผ ํ์—๋Œ€ํ•œ ์ดํ•ด ํ•„์š”  ์Šคํƒ์Šคํƒ : ์„ ์ž…ํ›„์ถœํŒŒ์ด์ฌ์—์„œ ์Šคํƒ์„ ์ด์šฉํ•  ๋•Œ๋Š” ๋ณ„๋„์˜ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•  ํ•„์š”๊ฐ€ ์—†๋‹ค.๊ธฐ๋ณธ ๋ฆฌ์ŠคํŠธ์—์„œ append()์™€ pop() ๋ฉ”์„œ๋“œ๋ฅผ ์ด์šฉํ•˜๋ฉด ์Šคํƒ ์ž๋ฃŒ๊ตฌ์กฐ์™€ ๋™์ผํ•˜๊ฒŒ ๋™์ž‘ํ•œ๋‹ค.append() ๋ฉ”์„œ๋“œ๋Š” ๋ฆฌ์ŠคํŠธ์˜ ๊ฐ€์žฅ ๋’ค์ชฝ์— ์‚ฝ์ž…, pop() ๋ฉ”์„œ๋“œ๋Š” ๋ฆฌ์ŠคํŠธ์˜ ๊ฐ€์žฅ ๋’ค์ชฝ์—์„œ ๋ฐ์ดํ„ฐ ๊บผ๋‚ด๊ธฐ ๋•Œ๋ฌธ  ํํ : ์„ ์ž…์„ ์ถœcollections ๋ชจ๋“ˆ์—์„œ ์ œ๊ณตํ•˜๋Š” deque ์ž๋ฃŒ๊ตฌ์กฐ๋ฅผ ํ™œ์šฉํ•˜์ž.deque๋Š” ์Šคํƒ๊ณผ ํ์˜ ์žฅ์ ์„ ๋ชจ๋‘ ์ฑ„ํƒํ•œ ๊ฒƒ์ธ๋ฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋„ฃ๊ณ  ๋นผ๋Š” ์†๋„๊ฐ€ ๋ฆฌ์ŠคํŠธ ์ž๋ฃŒํ˜•์— ๋น„ํ•ด ํšจ์œจ์ ์ด๋ฉฐque..
node version์„ ์—…๋ฐ์ดํŠธ ํ•˜๋ ค๋Š”๋ฐ npm install -g n์„ ํ•ด์คฌ์Œ์—๋„ n: command not found ์˜ค๋ฅ˜๊ฐ€ ๋–ด๋‹ค. curl -L https://bit.ly/n-install | bash ๋กœ๋„ ์‹œ๋„ํ•ด๋ณด์•˜์œผ๋‚˜ ์—ฌ์ „ํžˆ n: command not found ์˜ค๋ฅ˜๊ฐ€ ๋–ด๋‹ค. ๋งฅ๋ถ ์œ ์ €๋ผ๋ฉด ์นœ์ˆ™ํ•  brew ๋ฅผ ์ด์šฉํ•˜์—ฌ n์„ installํ•ด์ฃผ๋ฉด n: command not found ๋ฅผ ํ•ด๊ฒฐํ•ด์ค„ ์ˆ˜ ์žˆ๋‹ค. brew install n ๋กœ n์„ ์„ค์น˜ํ•ด์ฃผ๊ณ  sudo n lts ์ด๋ ‡๊ฒŒ ์ตœ์‹  ๋ฒ„์ „์„ ๋‹ค์šด๋กœ๋“œ ํ•ด์ฃผ๋ฉด ๋œ๋‹ค. ์™„์„ฑ ! ref https://www.npmjs.com/package/n#n--interactively-manage-your-nodejs-versions
๊ฐ€์ƒํ™”์ปดํ“จํŒ…์˜ ์ง„ํ™” ๊ฐ€์ƒํ™” (Virtualization) ๋ฌผ๋ฆฌ์ ์œผ๋กœ ๊ตฌ์„ฑ๋œ ์˜จํ”„๋ ˆ๋ฏธ์Šค๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์„œ ๊ฐ€์ƒ ์„œ๋ฒ„, ์ปจํ…Œ์ด๋„ˆ, ์„œ๋ฒ„๋ฆฌ์Šค์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๊ฐ€์ƒํ™”์ปดํ“จํŒ…์€ ์ง„ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. 1. ์˜จํ”„๋ ˆ๋ฏธ์Šค (On-Premises): ์ด๊ฒƒ์€ ๊ธฐ์—…์ด ์ž์ฒด ๋ฐ์ดํ„ฐ ์„ผํ„ฐ๋‚˜ ๋ฌผ๋ฆฌ์  ์„œ๋ฒ„๋ฅผ ๋ณด์œ ํ•˜๊ณ  ์šด์˜ํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค. ๋ชจ๋“  ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด๋Š” ํšŒ์‚ฌ ๋‚ด๋ถ€์— ๊ตฌ์ถ•๋˜๊ณ  ์œ ์ง€ ๊ด€๋ฆฌ๋ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ „์ฒด IT ์ธํ”„๋ผ๋ฅผ ์ง์ ‘ ๊ด€๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ ์ดˆ๊ธฐ ํˆฌ์ž ๋ฐ ์šด์˜ ๋น„์šฉ์ด ๋†’์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 2. ๊ฐ€์ƒ ์„œ๋ฒ„ (Virtual Machines - VMs): ๊ฐ€์ƒํ™”์˜ ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋กœ, ๋ฌผ๋ฆฌ์  ์„œ๋ฒ„๋ฅผ ํ•˜๋‚˜ ์ด์ƒ์˜ ๊ฐ€์ƒ ์„œ๋ฒ„๋กœ ๋‚˜๋ˆ„์–ด ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์€ ๋ฌผ๋ฆฌ์  ํ•˜๋“œ์›จ์–ด์˜ ๋ฆฌ์†Œ์Šค๋ฅผ ํšจ์œจ์ ์œผ๋กœ ํ™œ์šฉํ•˜๊ณ  ์—ฌ๋Ÿฌ ์šด์˜ ์ฒด์ œ ๋ฐ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์„ ๋‹จ์ผ ์„œ๋ฒ„..
์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ ๊ฐœ์š” ์‹œ์Šคํ…œ์˜ ๊ฐœ๋… 'ํŠน์ •ํ•œ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ด€๋ จ๋œ ๊ตฌ์„ฑ์š”์†Œ๋“ค์ด ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์œ ๊ธฐ์  ์ง‘ํ•ฉ์ฒด' ์ •๋ณด์‹œ์Šคํ…œ์ด๋ผ๋Š” ํ˜‘์˜์  ๊ด€์ ์—์„œ ๋ณผ ๋•Œ, ์‹œ์Šคํ…œ์€ ํฌ๊ฒŒ '์กฐ์ง์‹œ์Šคํ…œ'์ด๋ผ๊ณ  ํ•˜๋Š” ์‚ฌํšŒ์  ์‹œ์Šคํ…œ, '์ „์‚ฐ์‹œ์Šคํ…œ'์ด๋ผ๋Š” ๊ธฐ์ˆ ์  ์‹œ์Šคํ…œ ๋‘ ๊ฐ€์ง€๋กœ ์••์ถ•๋œ๋‹ค. ์•„ํ‚คํ…์ฒ˜์˜ ๊ฐœ๋… ์•„ํ‚คํ…์ฒ˜ : ๋น„์ฆˆ๋‹ˆ์Šค ์š”๊ตฌ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด ์ „์ฒด ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•œ ๋ฌธ์„œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ปดํฌ๋„ŒํŠธ, ๊ทธ ์ปดํฌ๋„ŒํŠธ๊ฐ„์˜ ๊ด€๊ณ„, ์ปดํฌ๋„ŒํŠธ๊ฐ€ ๋‹ค๋ฃจ๋Š” ์ •๋ณด(๋ฐ์ดํ„ฐ)๋ฅผ ์ •์˜ ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜์˜ ๋ฒ”์œ„ ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜ ์ค‘ TOPCIT์—์„œ๋Š” ์šด์˜์ฒด์ œ, ์ปดํ“จํ„ฐ ์•„ํ‚คํ…์ฒ˜, ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ, ๋„คํŠธ์›Œํฌ, ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ ์ด ๋‹ค์„ฏ ์˜์—ญ์„ ๋‹ค๋ฃฌ๋‹ค. 1. ์šด์˜์ฒด์ œ ์‚ฌ์šฉ์ž๊ฐ€ ์›ํ•˜๋Š” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋“œ์›จ..
yesolz
'๐Ÿค– Computer Science' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ธ€ ๋ชฉ๋ก